These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of prenatal nicotine exposure on hepatic glucose and lipid metabolism in offspring rats and its hereditability.
    Author: Hu W, Wang G, He B, Hu S, Luo H, Wen Y, Chen L, Wang H.
    Journal: Toxicology; 2020 Feb 28; 432():152378. PubMed ID: 31972234.
    Abstract:
    Prenatal nicotine exposure (PNE) could induce an increased susceptibility to multiple chronic diseases in adult offspring, that mainly caused by intrauterine maternal glucocorticoid (GC) over-exposure. We investigated the changes and inheritability of hepatic glucose and lipid metabolism caused by PNE, to decipher the possible intrauterine programming mechanism. Pregnant Wistar rats were administered subcutaneously with 2 mg/kg·d nicotine from gestational day (GD) 9∼20, and second-generation (F2) were set according to the mating between control females and PNE males. The results showed that serum phenotypes and hepatic enzymes of glucose and lipid metabolism were lower in F1 fetal rats of PNE but higher in the F1 adult rats. Meanwhile, the activated states of hepatic glucocorticoid-activation system, including type 1 and type 2 11β-hydroxysteroid dehydrogenases (Hsd11b1/2), nuclear receptor subfamily 3, group C, member 1 (Nr3c1) and CCAAT enhancer binding protein α (Cebpa), were positively correlated with serum corticosterone levels but negatively correlated with the histone acetylation (H3K27ac) and expression levels of insulin-like growth factor 1 (Igf1) before and after birth. Furthermore, serum phenotypes and hepatic enzymes of glucose and lipid metabolism were lower in both F2 fetal and adult rats of PNE, which were consistent with the hepatic changes of GC-IGF1 axis and the glucocorticoid-activation system. In conclusion, PNE could lead to inheritable changes of hepatic glucose and lipid metabolism, which are related to the intrauterine programming of GC-IGF1 axis induced by the glucocorticoid-activation system.
    [Abstract] [Full Text] [Related] [New Search]