These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exponential function for calculating saturable enzyme kinetics.
    Author: Keller F, Emde C, Schwarz A.
    Journal: Clin Chem; 1988 Dec; 34(12):2486-9. PubMed ID: 3197288.
    Abstract:
    Enzyme kinetics are usually described by the Michaelis-Menten equation, where the time-dependent decrease of substrate (-dS/dt) is a hyperbolic function of maximal velocity (Vmax), Michaelis constant (Km), and amount of substrate (S). Because the Michaelis-Menten function in its most general meaning requires an assumption of steady-state, it is less curvilinear than true enzyme kinetics. A saturation-type exponential function is more curvilinear than the hyperbolic function and more closely approximates enzyme kinetics: -dS/dt = Vmax [1 - exp(-S/Km)]. The mathematical representation of enzyme kinetics can be further improved by introducing a deceleration term (Vdec), to make the assumption of a steady state unnecessary. For the action of chymotrypsin on N-acetyltyrosylethylester, the Michaelis-Menten equation yields the following: Vmax = 3.74 mumol/min and Km = 833 mumol. According to decelerated enzyme kinetics, the values Vmax = 4.80 mumol/min, Vdec = 0.0118 mumol/min, and the association constant (Ka) = 0.00111/mumol are more nearly accurate for this reaction (where 1/Ka = 901 mumol approximately Km).
    [Abstract] [Full Text] [Related] [New Search]