These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Primate models to study eccrine sweating.
    Author: Elizondo RS.
    Journal: Am J Primatol; 1988; 14(3):265-276. PubMed ID: 31973440.
    Abstract:
    The histochemistry and histology of the eccrine sweat gland in the rhesus monkey (Macaca mulatta) are described. The histochemical distribution and localization of enzymes and substrates are very similar to those found in the human; innervation is cholinergic. Active eccrine glands on the general body surface average 136 glands/cm2. Above the thermal neutral zone (TNZ), sweating is the major avenue for heat loss and the role of panting in dissipating heat is relatively insignificant. The intrahypothalamic administration of prostaglandin E1 (PGE1) suppresses sweating and leads to an increase in core temperature. A linear relation is found between local sweat rates on the general body surface and clamped hypothalamic temperature. Studies also provide direct support for the concept that brain temperature and skin temperature interact additively in the control of sweating in higher primates. The functional characteristics of eccrine sweating in the patas monkey (Erythocebus) are qualitatively similar to those in the rhesus monkey. The patas monkey maintains a relatively constant rectal temperature (37.6-38.4°C) when equilibrated to a wide range of ambient temperaures of 15-40°C. Eccrine sweating is the main effector system for heat dissipation above the TNZ. We emphasize here that evaporative heat loss that is due to sweating is related to both mean skin and mean body temperature and at 40°C is 40% higher than that recorded from the rhesus monkey. These results indicate that the patas monkey, because of its high sweating capacity and other similarities with the human eccrine system, is a most appropriate animal model for comparative studies of eccrine sweat gland function in primates in general.
    [Abstract] [Full Text] [Related] [New Search]