These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Constructing nanopores in poly(oxymethylene)/multi-wall carbon nanotube nanocomposites via poly(l-lactide) assisting for improving electromagnetic interference shielding. Author: Li J, Chen JL, Tang XH, Cai JH, Liu JH, Wang M. Journal: J Colloid Interface Sci; 2020 Apr 01; 565():536-545. PubMed ID: 31982720. Abstract: Lightweight and high-performance conductive polymer composites (CPCs) have attracted much attention for electromagnetic interference (EMI) shielding. Herein, the porous structure was constructed in poly(oxymethylene)/multi-wall carbon nanotube (POM/MWCNT) nanocomposites via assisting by poly(l-lactide) (PLLA). First, the POM/PLLA/MWCNT (S-PMLNT) nanocomposites were obtained by melt mixing and compression molding. Second, the nanoporous POM/MWCNT (P-PMNT) nanocomposites were fabricated by selectively dissolving PLLA, solvent exchanging and freeze-drying. Because of well miscible between PLLA and POM, the homogeneous nanopores could be successfully fabricated in the P-PMNT composites by removing the PLLA phase. The multiple reflections and scattering of microwaves happened on the walls of these nanopores, which endowed the P-PMNT nanocomposites having higher EMI shielding effectiveness (SE) in comparison of the S-PMLNT nanocomposites, although the P-PMNT nanocomposites exhibited the lower electrical conductivity. For example, the S-PMLNT samples with 10 wt% MWCNTs showed an EMI SE of 48.1 dB and an electrical conductivity of 333 S/m, which changed to 58.6 dB in EMI SE and 125 S/m in electrical conductivity after removing PLLA phase. Furthermore, the P-PMNT10 nanocomposites had outstanding the EMI normal SE (SE/d) of 29.3 dB mm-1 and the EMI specific shielding effectiveness (SSE/d) of 344.4 dB cm2 g-1 because of their low density. In addition, the P-PMNT nanocomposites maintained high compression and tensile strength simultaneously.[Abstract] [Full Text] [Related] [New Search]