These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reactive Extrusion of Nonmigratory Antioxidant Poly(lactic acid) Packaging. Author: Herskovitz JE, Goddard JM. Journal: J Agric Food Chem; 2020 Feb 19; 68(7):2164-2173. PubMed ID: 31985224. Abstract: Reactive extrusion of bio-derived active packaging offers a new approach to address converging concerns over environmental contamination and food waste. Herein, metal-chelating nitrilotriacetic acid (NTA) ligands were grafted onto poly(lactic acid) (PLA) by reactive extrusion to produce metal-chelating PLA (PLA-g-NTA). Radical grafting was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy with the introduction of secondary alkyl stretches (2919 and 2860 cm-1) and by X-ray photoelectron spectroscopy (XPS) with an increase in the atomic percentage of nitrogen. Compared to films prepared from native, granular PLA (gPLA), PLA-g-NTA films had lower contact angles and hysteresis values (86.35° ± 2.49 and 31.89° ± 2.27 to 79.91° ± 1.58 and 21.79° ± 1.72, respectively), supporting the surface orientation of the NTA ligands. The PLA-g-NTA films exhibited a significant antioxidant character with a radical scavenging capacity of 0.675 ± 0.026 nmol Trolox(eq)/cm2 and an iron chelation capacity of 54.09 ± 9.36 nmol/cm2. PLA-g-NTA films delayed ascorbic acid degradation, retaining ∼45% ascorbic acid over the 9-day study compared to <20% for control PLA. This research makes significant advances in translating active packaging technologies to bio-derived materials using scalable, commercially translatable synthesis methods.[Abstract] [Full Text] [Related] [New Search]