These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analysis of drivers' deceleration behavior based on naturalistic driving data.
    Author: Li S, Li P, Yao Y, Han X, Xu Y, Chen L.
    Journal: Traffic Inj Prev; 2020; 21(1):42-47. PubMed ID: 31986072.
    Abstract:
    Objective: As one of the bases for designing a humanlike brake control system for the intelligent vehicle, drivers' deceleration behavior needs to be understood. There are two modes for drivers' deceleration behavior: (i) brake pedal input, by applying brake system to reduce the speed; (ii) no pedal input, by releasing the accelerator pedal without pressing the brake pedal, thus decelerating by naturalistic driving resistance. The deceleration behavior that drivers choose to press the brake pedal has been investigated in previous studies. However, releasing the accelerator pedal behavior has not received much attention. The objective of this study is to investigate factors that influence drivers' choice of the two deceleration modes using naturalistic driving data, which provide a theoretical foundation for the design of the brake control system.Methods: A logistic model was constructed to model drivers' deceleration mode, valued as "no pedal input" or "brake pedal input" for dependent variables. Factors such as Light condition, Intersection mode, Road alignment, Traffic flow, Traffic light, Ego-vehicle motion state, Lead vehicle motion state, Time headway (THW), and Ego-vehicle speed were considered in the model as independent variables.Results: 393 deceleration events were selected from the naturalistic driving data, which used as the database for the regression model. As a result, 6 remarkable factors were found to influence drivers' deceleration model, which include Traffic flow, Intersection mode, Lead vehicle motion state, Ego-vehicle motion state, Ego-vehicle speed and THW. Specifically, (1) the possibility of drivers choosing "no pedal input" is gradually increasing with the increase of THW and speed; (2) The drivers prefer to choose "no pedal input" when the lead vehicle is decelerating compared to it's stationary. This probability is relatively high when the lead vehicle is traveling along the road; (3) the possibility of choosing "no pedal input" at intersection is higher than roads without intersection; (4) the possibility of choosing "no pedal input" is higher when traveling with more traffic flow.Conclusion: The drivers' deceleration behavior can be divided into "no pedal input" and "brake pedal input." The following six factors significantly affect drivers' choice of deceleration mode: Traffic flow, Intersection mode, Lead vehicle motion state, Ego-vehicle motion state, Ego-vehicle speed and THW. The logistic regression model can quantify the influence of these six factors on drivers' deceleration behavior. This study provides a theoretical basis for the braking system design of ADAS (Advanced Driving Assistant System) and intelligent control system.
    [Abstract] [Full Text] [Related] [New Search]