These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Motor nuclei of peroneal muscles in the cat spinal cord. Author: Horcholle-Bossavit G, Jami L, Thiesson D, Zytnicki D. Journal: J Comp Neurol; 1988 Nov 15; 277(3):430-40. PubMed ID: 3198800. Abstract: The cat peroneal muscles have been used in numerous investigations dealing with the physiological properties of motor units, muscle spindles, and Golgi tendon organs. This report presents a study of the organization of peroneal motor pools in the cat spinal cord by means of retrograde axonal transport of horseradish peroxidase from individual muscles to the corresponding motoneurons. The motor nuclei of peroneus longus (PL), peroneus brevis (PB), and peroneus tertius (PT) muscles formed thin columns in the lateral part of the ventral horn in spinal segments L6-S1. In the transverse plane, the PT and PL nuclei occupied, respectively, dorsolateral and ventromedial positions, with PB nucleus in an intermediate position overlapping with the other two nuclei. Measurements of cell body diameters allowed identification of alpha and gamma subgroups in peroneal motoneuron populations. The average numbers of motoneurons were about 96 alpha and 60 gamma in PL, 75 alpha and 54 gamma in PB, and 34 alpha and 23 gamma in PT. Comparison with data from electrophysiological studies indicated that whole populations of motoneurons were labeled in each motor nucleus. The proportions of gamma motoneurons were the same, and cell bodies of gamma motoneurons had similar sizes in the three peroneal populations. In contrast, alpha motoneurons were significantly smaller in PB than in the two other pools, in keeping with the fact that PB contains a proportion of slow motor units larger than the two other muscles. In large samples of homonymous motoneurons, the numbers of first-order dendrites correlated linearly with motoneuron sizes.[Abstract] [Full Text] [Related] [New Search]