These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrochemical sensor based on an electrode modified with porous graphitic carbon nitride nanosheets (C3N4) embedded in graphene oxide for simultaneous determination of ascorbic acid, dopamine and uric acid. Author: Zhang L, Liu C, Wang Q, Wang X, Wang S. Journal: Mikrochim Acta; 2020 Jan 27; 187(2):149. PubMed ID: 31989275. Abstract: Two-dimensional porous graphitic carbon nitride (g-C3N4) nanosheets were synthesized by low-cost and direct thermal oxidation. Porous g-C3N4 assembled with graphene oxide (GO) was immobilized on a glassy carbon electrode. The sensor was applied to simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) with high performance. Cyclic voltammetry and differential pulse voltammetry were used to investigate electrochemical and electrocatalytic properties. The results indicate that the electrochemical sensor possesses high specific surface area, hierarchical pore structure and excellent signal response to AA, DA and UA. The oxidation potentials are well separated at around 0.15, 0.34 and 0.46 V for AA, DA and UA respectively. The determination limits for AA, DA and UA are 3.7 μM, 0.07 μM and 0.43 μM, respectively. The sensor was applied to tracking the three analytes in spiked serum samples with recovery 95.1~105.5% and relation standard deviations of less than 5%. Graphical abstract Schematic representation of porous graphitic carbon nitride nanosheet embedded in graphene oxide for simultaneous determination of ascorbic acid, dopamine and uric acid.[Abstract] [Full Text] [Related] [New Search]