These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The mixture effects of bisphenol derivatives on estrogen receptor and androgen receptor. Author: Park C, Song H, Choi J, Sim S, Kojima H, Park J, Iida M, Lee Y. Journal: Environ Pollut; 2020 May; 260():114036. PubMed ID: 31995776. Abstract: Bisphenol A (BPA) is a well-known for endocrine-disrupting chemical (EDC) and is one of the highest amounts of chemicals produced worldwide. Some countries restrict the use of BPA, which is widely used in the production of a variety products. Considering the toxicity and limitations on use of BPA, efforts are needed to find safer alternatives. Increasingly, bisphenol F (BPF) and bisphenol S (BPS) are alternatives of BPA, which is increasing their exposure levels in various environments. There are many ways to assess whether a chemical is an EDC. Here, we evaluated the endocrine-disrupting risks of the bisphenols by investigating their agonist and antagonist activities with the estrogen (ER), androgen (AR), and aryl hydrocarbon (AhR) receptors. Our results showed that BPA, BPS, and BPF (BPs) have estrogen agonist and androgen antagonist activities and decrease the ERα protein level. Interestingly, a mixture of the BPs had ER and anti-AR activity at lower concentrations than BPs alone. The activation of AhR was not a concentration-dependent effect of BPs, although it was increased significantly. In conclusion, BPs have estrogen agonist and androgen antagonist activities, and the effect of exposure to a BPs mixture differs from that of BPs alone.[Abstract] [Full Text] [Related] [New Search]