These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The synergy of chemical immobilization and electrical orientation of T4 bacteriophage on a micro electrochemical sensor for low-level viable bacteria detection via Differential Pulse Voltammetry. Author: Xu J, Zhao C, Chau Y, Lee YK. Journal: Biosens Bioelectron; 2020 Mar 01; 151():111914. PubMed ID: 31999572. Abstract: In this work, a wild-type T4 bacteriophage based micro electrochemical sensor (T4B-MES) was developed for specific and sensitive detection of viable pathogenic bacteria. Recently, bacteriophage has been widely applied as recognition elements for bacteria detection due to its low cost, high stability and specificity. Firstly, a systematic study was proposed in this paper to investigate the synergy of externally applied electric field and chemical functionalization on phage immobilization, involving several key factors such as Debye length. According to our experiments, the capture efficiency of the deposited phages had reached the maximum when the Debye length was comparable to the phage size. With the optimized immobilization protocol, the sensitivity of the T4B-MES was then determined with Differential Pulse Voltammetry (DPV), providing a quite low detection limit of 14 ± 5 cfu/mL and a wide dynamic range of 1.9 × 101-1.9 × 108 cfu/mL. In addition, the T4B-MES demonstrated the ability to distinguish viable and dead bacteria cells with high specificity, making it a promising solution in a variety of applications, e.g., water quality monitoring.[Abstract] [Full Text] [Related] [New Search]