These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hepatic FNDC5 is a potential local protective factor against Non-Alcoholic Fatty Liver. Author: Canivet CM, Bonnafous S, Rousseau D, Leclere PS, Lacas-Gervais S, Patouraux S, Sans A, Luci C, Bailly-Maitre B, Iannelli A, Tran A, Anty R, Gual P. Journal: Biochim Biophys Acta Mol Basis Dis; 2020 May 01; 1866(5):165705. PubMed ID: 32001301. Abstract: The proteolytic cleavage of Fibronectin type III domain-containing 5 (FNDC5) generates soluble irisin. Initially described as being mainly produced in muscle during physical exercise, irisin mediates adipose tissue thermogenesis and also regulates carbohydrate and lipid metabolism. The aim of this study was to evaluate the hepatic expression of FNDC5 and its role in hepatocytes in Non-Alcoholic Fatty Liver (NAFL). Here we report that hepatic expression of FNDC5 increased with hepatic steatosis and liver injury without impacting the systemic level of irisin in mouse models of NAFLD (HFD and MCDD) and in obese patients. The increased Fndc5 expression in fatty liver resulted from its upregulation in hepatocytes and non-parenchymal cells in mice. The local production of Fndc5 in hepatocytes was influenced by genotoxic stress and p53-dependent pathways. The down-regulation of FNDC5 in human HepG2 cells and in primary mouse hepatocytes increased the expression of PEPCK, a key enzyme involved in gluconeogenesis associated with a decrease in the expression of master genes involved in the VLDL synthesis (CIDEB and APOB). These alterations in FNDC5-silenced cells resulted to increased steatosis and insulin resistance in response to oleic acid and N-acetyl glucosamine, respectively. The downregulation of Fndc5 also sensitized primary hepatocytes to apoptosis in response to TNFα, which has been associated with decreased hepatoprotective autophagic flux. In conclusion, our human and experimental data strongly suggest that the hepatic expression of FNDC5 increased with hepatic steatosis and its upregulation in hepatocytes could dampen the development of NAFLD by negatively regulating steatogenesis and hepatocyte death.[Abstract] [Full Text] [Related] [New Search]