These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Knockout of Diguanylate Cyclase Genes in Lysobacter enzymogenes to Improve Production of Antifungal Factor and Increase Its Application in Seed Coating. Author: Ren X, Ren S, Xu G, Dou W, Chou SH, Chen Y, Qian G. Journal: Curr Microbiol; 2020 Jun; 77(6):1006-1015. PubMed ID: 32002625. Abstract: Heat-stable antifungal factor (HSAF) is a broad-spectrum antifungal antibiotic produced by the biological control agent, Lysobacter enzymogenes. In our earlier works, we have applied HSAF to effectively control wheat and pear fungal disease. However, a major bottleneck in its practical application is the low HSAF production level; therefore, boosting its production is essential for its wide application. In the past, we find that c-di-GMP, a universal bacterial second messenger, is inhibitory to HSAF production. In this work, we further identified eight active diguanylate cyclases (DGCs) responsible for c-di-GMP synthesis in Lysobacter enzymogenes via both bioinformatics and genetic analyses. We generated a strain lacking seven active DGC genes and found that this DGC-modified strain, OH11LC, produced a higher HSAF amount in a c-di-GMP concentration-dependent manner. Subsequently, by employing OH11LC as the host fermentation strain, we could even produce a much higher HSAF amount (> 200-fold). After improving the HSAF production, we further developed a technique of seed coating method with HSAF, which turned out to be effective in fighting against the maize seed-borne filamentous pathogen, Pythium gramineacola. Overall, via combining strain modification and fermentation optimization, we demonstrated a good example of translating fundamental knowledge of bacterial c-di-GMP signaling into biological control application in which we relieved the inhibitory effect of c-di-GMP on HSAF biosynthesis by deleting a bunch of potentially active L. enzymogenes DGC genes to improve HSAF yield and to expand its usage in antifungal seed coating.[Abstract] [Full Text] [Related] [New Search]