These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Porous defective carbon nitride obtained by a universal method for photocatalytic hydrogen production from water splitting.
    Author: Jing L, Wang D, Xu Y, Xie M, Yan J, He M, Song Z, Xu H, Li H.
    Journal: J Colloid Interface Sci; 2020 Apr 15; 566():171-182. PubMed ID: 32004957.
    Abstract:
    For the first time, herein this work, we have developed an effective and adaptable method to introduce defects onto the polymeric carbon nitride by simply grinding urea with urea nitrate which resulting new carbon nitride composite (UNU-C3N4) and melamine with urea nitrate which resulting new carbon nitride composite (UNM-C3N4). The UNU-C3N4 reveals high performance towards photocatalytic hydrogen production and as well as photocatalytic removal of contaminants. The results confirm that the defects enhanced the specific surface area, and improved performance of adsorbed oxygen which beneficial to generate more active radicals and more conducive sties to improve d the overall photocatalytic performance. The high N, H, and O content-enhanced electron polarization effects, by introducing the additional N, H, and O atoms into the g-C3N4 matrix, which will increase the charge transfer rate and charge separation efficiency. At the same time, the results of ESR also expression that the new type of as-prepared carbon nitride samples exhibit abundant of hydrogen radical (H) formation, which is also assist to improve the photocatalytic hydrogen production performance. As expected, the H2 evolution rate of UNU-C3N4(or UNM-C3N4) underneath simulated solar light irradiation is 9.93 times (13.76 times) than that of U-C3N4 (urea as raw material) (or M-C3N4 (melamine as raw material)). The high hydrogen evolution rates of UNU-C3N4 and UNM-C3N4 are 830.94 and 556.79 μmol g-1  h-1 under the visible-light irradiation, respectively. Meanwhile, the synthesized UNU-C3N4 and UNM-C3N4 material are demonstrated an efficient ability to degrade pollutants. In general, this work provides a viable way to introduce defects and hydrogen bands into the structure of carbon nitride.
    [Abstract] [Full Text] [Related] [New Search]