These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Murine's amygdala microstructure and elevated plus maze activities following R. vomitoria root bark and G. latifolium leaf extracts administration.
    Author: Nduohosewo IS, Ekong MB.
    Journal: Anat Sci Int; 2020 Jun; 95(3):342-355. PubMed ID: 32006225.
    Abstract:
    R. vomitoria (RV), a plant used locally in the management of psychotic disorders, adversely affects the brain functionally and structurally. Such adverse reports, as well as the potential of G. latifolium (GL) to mitigate same warranted this investigation on the combined actions of RV and GL on the amygdala. Twenty-four male CD-1 mice weighing 22-27 g were divided into four groups (n = 6): Control (20 ml/kg body weight, b.w., distilled water); RV (200 mg/kg b.w.), GL (200 mg/kg b.w.), and RV (200 mg/kg b.w.) and GL (200 mg/kg b.w.) combination orally, and for 14 days. On day 15, the elevated-plus maze test was carried out and the animals sacrificed, and processed for histological and immunohistochemical studies. Neurobehavioural results showed significant decrease (p[Formula: see text] 0.001) in stretch-attend posture, time spent in closed arms, grooming frequency, protected head-dip, as well as significantly (p [Formula: see text] 0.01) increased time spent in the open arms and unprotected head-dips of the RV group. The combined RV and GL groups showed no such differences in these parameters. Histologically, the amygdala showed hypertrophied cells, with pyknotic and karyorrhectic nuclei, and reduced expression of Nissl substance in the RV group, while the combined RV and GL group showed less degenerative features. Glial fibrillary acidic protein expression (GFAP) was increased in the RV group, while the combined RV and GL group showed reduced expression. In conclusion, RV root bark extract has adverse effects on the microstructure of murines' amygdala and their behaviour, which may be ameliorated by GL.
    [Abstract] [Full Text] [Related] [New Search]