These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Separation performance of a new triptycene-based stationary phase with polyethylene glycol units and its application to analysis of the essential oil of Osmanthus fragrans Lour. Author: He Y, Qi M. Journal: J Chromatogr A; 2020 May 10; 1618():460928. PubMed ID: 32008822. Abstract: This work presents a new triptycene-based stationary phase (TP-PEG) combining the three-dimensional (3D) triptycene (TP) framework with polyethylene glycol (PEG) moieties for gas chromatographic (GC) separations. Its statically coated capillary column showed high column efficiency of 5263 plates/m determined by naphthalene at 120 °C. Its Rohrschneider-McReynolds constants and Abraham solvation system constants were measured to characterize its polarity and molecular interactions with analytes of different types. As evidenced, the TP-PEG column showed high-resolution performance for the isomers of anilines, phenols, halobenzenes and alkanes with distinct advantages over the PEG columns, particularly those critical isomers such as 3,5-/2,3-xylidine (R = 2.94), m-/p-chlorotoluene (R = 1.92), p-/m-cresol (R = 1.89), 2,2-dimethylbutane/2-methylpentane (R = 1.51), 2,2,3-trimethylbutane /2,3-dimethyl pentane (R = 1.74) and 2,3-dimethylpentane/n-heptane (R = 1.92). In addition, it exhibited good column repeatability and reproducibility with the relative standard deviation (RSD) values of 0.02%-0.09% for run-to-run, 0.13%-0.22% for day-to-day and 2.7%-4.1% for column-to-column, respectively, and a wide operational temperature range (30 °C-280 °C) . Its application to GC-MS analysis of the essential oil of Osmanthus fragrans has proven its good potential for practical analysis of complex samples.[Abstract] [Full Text] [Related] [New Search]