These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Concurrence of quantum anomalous Hall and topological Hall effects in magnetic topological insulator sandwich heterostructures. Author: Jiang J, Xiao D, Wang F, Shin JH, Andreoli D, Zhang J, Xiao R, Zhao YF, Kayyalha M, Zhang L, Wang K, Zang J, Liu C, Samarth N, Chan MHW, Chang CZ. Journal: Nat Mater; 2020 Jul; 19(7):732-737. PubMed ID: 32015537. Abstract: The quantum anomalous Hall (QAH) effect is a consequence of non-zero Berry curvature in momentum space. The QAH insulator harbours dissipation-free chiral edge states in the absence of an external magnetic field. However, the topological Hall (TH) effect, a hallmark of chiral spin textures, is a consequence of real-space Berry curvature. Here, by inserting a topological insulator (TI) layer between two magnetic TI layers, we realized the concurrence of the TH effect and the QAH effect through electric-field gating. The TH effect is probed by bulk carriers, whereas the QAH effect is characterized by chiral edge states. The appearance of the TH effect in the QAH insulating regime is a consequence of chiral magnetic domain walls that result from the gate-induced Dzyaloshinskii-Moriya interaction and occurs during the magnetization reversal process in the magnetic TI sandwich samples. The coexistence of chiral edge states and chiral spin textures provides a platform for proof-of-concept dissipationless spin-textured spintronic applications.[Abstract] [Full Text] [Related] [New Search]