These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Long-term performance of denitrifying anaerobic methane oxidation under stepwise cooling and ambient temperature conditions.
    Author: Li W, Lu P, Zhang L, Ding A, Wang X, Yang H, Zhang D.
    Journal: Sci Total Environ; 2020 Apr 15; 713():136739. PubMed ID: 32019052.
    Abstract:
    Nitrate-dependent anaerobic methane oxidation (N-DAMO), a bioprocess that couples the oxidation of green gas and the removal of nitrogen oxides in a microbial group, has gained much attention as a potential economical method of biological removal of nitrates and methane from wastewater. Low-temperature (20 °C) operation of N-DAMO would be beneficial to utilize the methane dissolved in the effluent and thus decrease the cost of maintaining the bioreactor temperature in wastewater treatment. Here, the long-term (>350 days) operational activities of N-DAMO were evaluated to assess the performance of N-DAMO from stepwise cooling (30-20 °C) to ambient temperatures (13-38 °C). Under stepwise cooling conditions, the activity of the N-DAMO community was first inhibited and then rapidly adjusted. Notably, a similar N-DAMO activity was observed at 30 °C and 20 °C. Under ambient temperature conditions, the highest nitrate removal rate observed at the beginning of the test was 7.14 mg-N/L/d, which was 5.3 times higher than that recorded at the end of the test. This indicates that the long-term temperature fluctuation irreversibly inhibited N-DAMO activity. 16S rRNA gene sequencing analyses found that the functional archaea were ANME-2D, which has been deemed as the dominant culture in the N-DAMO process. The abundance of ANME-2D on the last day at stepwise cooling temperature conditions was much higher than on day 0, but disappeared after a long period of operation at ambient temperature. It was assumed that N-DAMO would stabilize at stepwise cooling temperature conditions, but not at ambient temperature. Our findings could offer a promising technology for anaerobic wastewater treatment plants (WWTPs) in temperate and warm climate zones.
    [Abstract] [Full Text] [Related] [New Search]