These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hypersensitivity to cold stimulation associated with regional osteoporotic changes in tail-suspended mice. Author: Ibe K, Iba K, Hanaka M, Kiyomoto K, Hayakawa H, Teramoto A, Emori M, Yamashita T. Journal: J Bone Miner Metab; 2020 Jul; 38(4):469-480. PubMed ID: 32020290. Abstract: INTRODUCTION: Cold intolerance is defined as abnormal pain resulting from exposure to cold stimulation after trauma. However, the pathophysiology remains unclear. We recently demonstrated that regional osteoporotic changes accompanied by high bone turnover were involved in causing pain-like behaviors in the unloaded hind limbs of tail-suspended mice. Bisphosphonate prevented pain-like behaviors and high bone turnover conditions in tail-suspended mice. The aims of this study were to examine the relationship between regional osteoporotic changes and the induction of hypersensitivity to cold stimulation. MATERIALS AND METHODS: The hind limbs of tail-suspended mice were unloaded for 2 weeks. The von Frey test and paw-flick test assessed pain-like behaviors and cold plate test evaluated cold escape behaviors. Furthermore, we examined whether cold hypersensitivity associated with regional osteoporotic changes could be improved by bisphosphonate, TRPV1 and TRPA1 antagonists. RESULTS: Hypersensitivity to cold stimulation was induced more noticeably in the tail-suspended mice, and this effect was related to the increased expression of bone metabolism markers. In addition, the cold hypersensitivity was improved by the resumption of weight bearing and prevented by bisphosphonate or a TRPV1 antagonist, and was accompanied with a decrease in the expression of bone metabolism markers. TRPA1 antagonist significantly improved the cold escape behavior, but had no significant effects on the expression of those markers. CONCLUSION: We demonstrated that the regional osteoporotic changes accompanying a high bone turnover state could be involved in the induction of hypersensitivity to cold stimulation in the tail-suspended mice.[Abstract] [Full Text] [Related] [New Search]