These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tandem Catalysis of Ammonia Borane Dehydrogenation and Phenylacetylene Hydrogenation Catalyzed by CeO2 Nanotube/Pd@MIL-53(Al).
    Author: Li X, Song L, Gao D, Kang B, Zhao H, Li C, Hu X, Chen G.
    Journal: Chemistry; 2020 Apr 01; 26(19):4419-4424. PubMed ID: 32027761.
    Abstract:
    Heterogeneously catalyzed, selective hydrogenation in the liquid phase is widely used in industry for the synthesis of chemicals. However, it can be a challenge to prevent active nanoparticles (e.g., palladium) from aggregation/leaching and meanwhile achieve high conversion as well as selectivity, especially under mild conditions. To address these issues, a CeO2 nanotube/Pd@MIL-53(Al) sandwich-structured catalyst has been prepared in which the MIL-53(Al) porous shell can efficiently stabilize the palladium nanoparticles. When this catalyst was used in a tandem catalytic reaction involving the dehydrogenation of ammonia borane and the hydrogenation of phenylacetylene, remarkably, the hydrogen released from the dehydrogenation of ammonia borane boosted the catalytic process, with 100 % conversion of phenylacetylene and a selectivity of 96.2 % for styrene, even at room temperature and atmospheric pressure, within 1 min. This work therefore provides an alternative strategy for balancing the conversion and selectivity of liquid-phase hydrogenation reactions.
    [Abstract] [Full Text] [Related] [New Search]