These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enzyme induced molecularly imprinted polymer on SERS substrate for ultrasensitive detection of patulin. Author: Zhu Y, Wu L, Yan H, Lu Z, Yin W, Han H. Journal: Anal Chim Acta; 2020 Mar 08; 1101():111-119. PubMed ID: 32029101. Abstract: We designed a new type of MIP-SERS substrate for specific and label-free detection of patulin (PAT), by combining molecular imprinting polymer (MIP) selectivity and SERS technology sensitivity. Initially, the solid substrate of PDMS/AAO was prepared using poly dimethylsiloxane (PDMS) concreted anodized aluminum oxide (AAO) template. Then moderate Au was sputtered on the surface of PDMS/AAO to obtain Au/PDMS/AAO SERS substrate. Based on the HRP enzyme initiated in situ polymerization on the Au/PDMS/AAO, the MIP-SERS substrate was successfully synthesized with selective polymer and high tense of SERS "hot spots". The new MIP-SERS substrate showed strong SERS enhancement effect and good selectivity for PAT. Besides, the results showed that the method owned a linear range from 5 × 10-10 to 10-6 M with the limit of detection (LOD) of 8.5 × 10-11 M (S/N = 3) for PAT. The proposed method also exhibited acceptable reproducibility (relative standard deviation, RSD = 4.7%),good stability (Raman intensity is above 80% after two weeks) and recoveries from 96.43% to 112.83% with the average RSD of 6.3%. The substrate is easy to use without complex sample pretreatment, which makes it a potential candidate as a rapid and sensitive detection method in food samples.[Abstract] [Full Text] [Related] [New Search]