These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [The role of aldehyde dehydrogenases in the malonic dialdehyde metabolism in the rat liver]. Author: Pirozhkov SV, Panchenko LF. Journal: Biokhimiia; 1988 Sep; 53(9):1443-8. PubMed ID: 3203107. Abstract: The enzymes catalyzing the NAD-dependent oxidation of malonic dialdehyde (MDA) were isolated from rat liver extracts. Upon 5'-AMP-Sepharose chromatography MDA dehydrogenase was separated into two isoforms, I and II. Isoform I was eluted from the affinity carrier with a 0.1 M phosphate buffer pH 8.0. This isoform had a broad substrate specificity towards aliphatic and aromatic aldehydes. Kinetic studies showed that short- and medium-chain aliphatic aldehydes (C2-C6) were characterized by the lowest Km values and the highest Vmax values. The Km' values for MDA and acetaldehyde were 2.8 microM and 0.69 microM, respectively. Isoform II was eluted with a 0.1 M phosphate buffer pH 8.0 containing 0.5 mM NAD, was the most active with medium- and long-chain aliphatic aldehydes (C6-C11) and had Km values for MDA and acetaldehyde equal to 37 microM and 52 microM, respectively. Isoform I was much more sensitive towards disulfiram inhibition than isoform II. Both isoforms had an identical molecular mass (93 kD) upon gel filtration. It is concluded that MDA dehydrogenase isoform I is identical to mitochondrial aldehyde dehydrogenase having a low Km for acetaldehyde, whereas isoform II may be localized in liver cytosol. The role of aldehyde dehydrogenases in the metabolism of aldehydes derived from lipid peroxidation is discussed.[Abstract] [Full Text] [Related] [New Search]