These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gold Nanobones Enhanced Ultrasensitive Surface-Enhanced Raman Scattering Aptasensor for Detecting Escherichia coli O157:H7.
    Author: Zhou S, Lu C, Li Y, Xue L, Zhao C, Tian G, Bao Y, Tang L, Lin J, Zheng J.
    Journal: ACS Sens; 2020 Feb 28; 5(2):588-596. PubMed ID: 32037808.
    Abstract:
    Sensitive, robust, and highly specific detection of Escherichia coli O157:H7, one of the most hazardous foodborne pathogens and the cause of numerous diseases, is needed to ensure public health. Herein, a one-pot step method is reported for the preparation of multifunctional gold nanobones (NBs) (GNRApt-1+RhB) from gold nanorods (GNRs) comediated by an aptamer (Apt-1) and the signal molecule rhodamine B (RhB) for surface-enhanced Raman scattering detection of E. coli O157:H7. The characterized result showed that Apt-1 and RhB were embedded in the gold NBs, and then, this combination exhibited good recognition, excellent stability, and significant Raman signal intensity enhancement. The Raman enhancement derived from a strong electromagnetic field distribution with the locations at the apex of both ends of the GNRApt-1+RhB and the signal stability was because of the firm embedment of Apt-1 (poly A20 + E. coli O157:H7 aptamers) and RhB on the surface of the GNRApt-1+RhB. Optimization experiments established that surface-enhanced Raman-scattered RhB absorption at 1350 cm-1 had a strong linear relationship (y = 180.30x - 61.49; R2 = 0.9982) with E. coli O157:H7 concentration over the range of 10-10,000 cfu/mL with a limit of detection of 3 cfu/mL. This novel aptasensor sensitively detects E. coli O157:H7 and has great promise for food pathogenic bacteria detection.
    [Abstract] [Full Text] [Related] [New Search]