These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reprogramming of chimpanzee fibroblasts into a multipotent cancerous but not fully pluripotent state by transducing iPSC factors in 2i/LIF culture. Author: Lin ZY, Nakai R, Hirai H, Kozuka D, Katayama S, Nakamura SI, Okada S, Kitajima R, Imai H, Okano H, Imamura M. Journal: Differentiation; 2020; 112():67-76. PubMed ID: 32045848. Abstract: To induce and maintain naïve pluripotency in mouse embryonic and induced pluripotent stem cells (ESCs/iPSCs), chemically defined N2B27 medium with PD0325901, CHIR99021, and leukemia inhibitory factor (2i/LIF) is a classic and simple condition. However, this method cannot be simply extrapolated to human ESCs/iPSCs that are principally stabilized in primed pluripotency and become primitive neuroepithelium-like cells in N2B27+2i/LIF culture. Here, we assessed iPSC reprogramming of fibroblasts from chimpanzee, our closest living relative, in N2B27+2i/LIF culture. Under this condition, chimpanzee cells formed alkaline phosphatase-positive dome-shaped colonies. The colony-forming cells could be stably expanded by serial passaging without a ROCK inhibitor. However, their gene expression was distinct from iPSCs and neuroepithelium. They expressed the OCT3/4 transgene and a subset of transcripts associated with pluripotency, mesenchymal-epithelial transition, and neural crest formation. These cells exhibited a differentiation potential into the three germ layers in vivo and in vitro. The current study demonstrated that iPSC reprogramming in N2B27+2i/LIF culture converted chimpanzee fibroblasts into a multipotent cancerous state with unique gene expression, but not fully pluripotent stem cells.[Abstract] [Full Text] [Related] [New Search]