These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fetal Renal DNA Methylation and Developmental Programming of Stress-Induced Hypertension in Growth-Restricted Male Mice. Author: DuPriest E, Hebert J, Morita M, Marek N, Meserve EEK, Andeen N, Houseman EA, Qi Y, Alwasel S, Nyengaard J, Morgan T. Journal: Reprod Sci; 2020 May; 27(5):1110-1120. PubMed ID: 32046425. Abstract: Fetal growth restriction (FGR) is associated with developmental programming of adult onset hypertension, which may be related to differences in nephron development. Prior studies showed that maternal nutrient restriction is associated with reduced nephrogenesis in rodents, especially in male progeny. We hypothesized that maternal genetic risk for FGR may similarly affect fetal kidney development, leading to adult onset hypertension. We employed an angiotensinogen (AGT) gene titration transgenic (TG) construct with 3 copies of the mouse AGT gene that mimics a common human genotype (AGT A[-6]G) associated with FGR. We investigated whether FGR in 2-copy (wild type, [WT]) progeny from 3-copy TG dams leads to developmental programming differences in kidney development and adult blood pressure compared with age- and sex-matched controls. Progeny were tested in the late fetal period (e17.5), neonatal period (2 weeks of age), and as young adults (12 weeks). We measured weights, tested for renal oxidative stress, compared renal DNA methylation profiles, counted the number of glomeruli, and measured adult blood pressure ± stress. Progeny from TG dams were growth restricted with evidence of renal oxidative stress, males showed fetal renal DNA hypermethylation, they had fewer glomeruli, and they developed stress-induced hypertension as adults. Their female siblings did not share this pathology and instead resembled progeny from WT dams. Surprisingly, glomerular counts in the neonatal period were not different between sexes or maternal genotypes. In turn, we suspect that differences in fetal renal DNA methylation may affect the long-term viability of glomeruli, rather than reducing nephrogenesis.[Abstract] [Full Text] [Related] [New Search]