These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced catalytic performance for volatile organic compound oxidation over in-situ growth of MnOx on Co3O4 nanowire. Author: Zhao Q, Liu Q, Zheng Y, Han R, Song C, Ji N, Ma D. Journal: Chemosphere; 2020 Apr; 244():125532. PubMed ID: 32050334. Abstract: Hierarchical Co3O4@MnOx material has been synthesized by in-suit growth of MnOx on the Co3O4 and applied in catalytic oxidation of volatile organic compounds (VOCs). Results revealed that T90 of acetone on the Co3O4@MnOx was 195 °C, which was 36 °C and 32 °C lower than that on the Co3O4 and MnOx/Co3O4, respectively. The universality experiments demonstrated that T90 of ethyl acetate and toluene on the Co3O4@MnOx were 200 °C and 222 °C, respectively. The above results indicated that Co3O4@MnOx catalyst presented a robust catalytic performance. Characterization results showed that high catalytic activity of the Co3O4@MnOx catalyst could be attributed to the improvement of low temperature reducibility, the enhancement of Co3+ and adsorbed oxygen species resulted from the sufficient reaction between MnO4- and Co2+ during secondary hydrothermal process. Furthermore, stability and water-resistance experiments showed the Co3O4@MnOx catalyst with high cycle and long-term stability, satisfied endurability to 5.5-10 vol. % water vapor at 210 °C.[Abstract] [Full Text] [Related] [New Search]