These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Efficient Organic Solar Cells Based on Non-Fullerene Acceptors with Two Planar Thiophene-Fused Perylene Diimide Units. Author: Liu J, Lu H, Liu Y, Zhang J, Li C, Xu X, Bo Z. Journal: ACS Appl Mater Interfaces; 2020 Mar 04; 12(9):10746-10754. PubMed ID: 32054268. Abstract: We designed and synthesized two non-fullerene acceptors (CDT-TFP and C8X-TFP), which comprise a central 4H-cyclopenta[2,1-b:3,4-b']dithiophene (CDT) as the bridge and two thiophene-fused perylene diimide (TFP) units. The bulky side chains, such as the 4-hexylphenyl side chains, on the CDT bridge can effectively prevent the acceptor molecules from forming large aggregates, and the π-π stacking of the terminal planar TFP units can form effective electron transport pathways when blending with the donor polymers. These non-fullerene acceptors are used to fabricate organic solar cells (OSCs) by blending with the regioregular middle bandgap polymer reg-PThE. The as-cast devices based on reg-PThE:CDT-TFP show the best power conversion efficiency (PCE) of 8.36% with a Voc of 1.10 V, Jsc of 12.43 mA cm-2, and an FF of 61.4%, whereas the analogue perylene diimide (PDI) dimers (CDT-PDI) that comprise two PDI units bridged with a CDT unit show only a 2.59% PCE with a Voc of 0.92 V, Jsc of 6.82 mA cm-2, and an FF of 41.5%. Our results have demonstrated that the non-fullerene acceptors comprising planar PDI units can achieve excellent photovoltaic performance and provide meaningful guidelines for the design of PDI-based non-fullerene electron acceptors for efficient OSCs.[Abstract] [Full Text] [Related] [New Search]