These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhancement of ball-miling on pyrite/zero-valent iron for arsenic removal in water: A mechanistic study. Author: Du M, Zhang Y, Zeng X, Kuang H, Huang S. Journal: Chemosphere; 2020 Jun; 249():126130. PubMed ID: 32058134. Abstract: In this study, the effect of ball milling on pyrite (FeS2) promoting arsenic (As) removal by zero-valent iron (Fe0) was investigated. The influences of different mass ratios of ball-milled FeS2/Fe0, the dosage of ball-milled FeS2/Fe0 used and initial pH value were evaluated by batch experiments. The results showed that the ball-milled FeS2/Fe0 system had a higher total As removal efficiency than the mixed FeS2-Fe0 system, ball-milled FeS2 and ball-milled Fe0 systems in equal mass. Higher As removal efficiency in ball-milled FeS2/Fe0 system was primarily related to the accelerated corrosion of Fe0, which was supported by the determination of total Fe2+ release and electrochemical experiments. SEM-EDS and XPS characterizations revealed that there were iron sulfides (Fe(II)-S and Fe(III)-S) produced on the surface of Fe0 in ball-milled FeS2/Fe0, which could facilitate the electron transfer of Fe0 and enhanced the corrosion of it. BET test also indicated that ball-milled FeS2/Fe0 possessed a higher specific surface area than ball-milled Fe0. In addition, the results also showed the optimum mass ratio of FeS2 and Fe0 in ball-milled FeS2/Fe0 to remove As ([As(III)] = 2 mg/L) was 1:1, and the optimum dosage was 0.5 g/L, thereby indicating the optimal As:Fe0 molar ratio was about 1:168. And the removal rate of As by ball-milled FeS2/Fe0 was faster in acidic condition than that in alkaline condition. These findings suggest that Fe0-based arsenic removal efficiency can be enhanced by ball-milling with FeS2, making it more feasible for remediation of arsenic-polluted water.[Abstract] [Full Text] [Related] [New Search]