These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phenolic Profiles of Hardy Kiwifruits and Their Neuroprotective Effects on PC-12 and SH-SY5Y Cells against Oxidative Stress.
    Author: Jeong HR, Kim KJ, Lee SG, Cho HS, Cho YS, Kim DO.
    Journal: J Microbiol Biotechnol; 2020 Jun 28; 30(6):912-919. PubMed ID: 32066217.
    Abstract:
    Hardy kiwifruits (Actinidia arguta Planch.) have high amounts of antioxidants, including ascorbic acid (vitamin C) and phenolics. The anti-cholinesterase activity and neuroprotective effects of three different cultivars of hardy kiwifruits, cv. Mansu (A. arguta × A. deliciosa), cv. Haeyeon (A. arguta), and cv. Chiak (A. arguta), on PC-12 and SH-SY5Y cells were evaluated. Extraction of phenolics and vitamin C was carried out using 80% (v/v) aqueous ethanol and metaphosphoric acid assisted with homogenization, respectively. Hardy kiwifruit of cv. Mansu showed higher total phenolic, total flavonoid, and vitamin C contents and antioxidant capacity compared to the other tw°Cultivars of hardy kiwifruits, cv. Haeyeon and cv. Chiak. Analysis of high-performance liquid chromatography results revealed the presence of procyanidin B2, (?)-epicatechin, neochlorogenic acid, cryptochlorogenic acid, rutin, hyperoside, isoquercitrin, and astragalin in hardy kiwifruits. The three cultivars of hardy kiwifruits had a wide range of vitamin C content of 55.2?130.0 mg/100 g fresh weight. All three cultivars of hardy kiwifruits had protective effects on neuronal PC-12 and SHSY5Y cells exposed to hydrogen peroxide by increasing cell viability and reducing intracellular oxidative stress. Furthermore, the hardy kiwifruits inhibited acetylcholinesterase and butyrylcholinesterase. Collectively, these results suggest that hardy kiwifruits rich in antioxidants like phenolics and vitamin C have good potential as functional materials in neuroprotective applications.
    [Abstract] [Full Text] [Related] [New Search]