These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activity of fibroblast-like synoviocytes in rheumatoid arthritis was impaired by dickkopf-1 targeting siRNA. Author: Liu YY, Wang SY, Li YN, Bian WJ, Zhang LQ, Li YH, Long L, Liu X, Zhang XW, Li ZG. Journal: Chin Med J (Engl); 2020 Mar 20; 133(6):679-686. PubMed ID: 32068606. Abstract: BACKGROUND: Fibroblast-like synoviocytes (FLSs), resident mesenchymal cells of synovial joints, play an important role in the pathogenesis of rheumatoid arthritis (RA). Dickkopf-1 (DKK-1) has been proposed to be a master regulator of bone remodeling in inflammatory arthritis. Here, potential impairation on the activity of FLSs derived from RA to small interfering RNAs (siRNAs) targeting DKK-1 was investigated. METHODS: siRNAs targeting DKK-1 were transfected into FLSs of patients with RA. Interleukin (IL)-1β, IL-6, IL-8, matrix metalloproteinase (MMP) 2, MMP3, MMP9, transforming growth factor (TGF)-β1, TGF-β2 and monocyte chemoattractant protein (MCP)-1 levels in the cell culture supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Invasion assay and H incorporation assay were utilized to investigate the effects of siRNAs targeting DKK-1 on FLSs invasion and cell proliferation, respectively. Western blotting was performed to analyze the expression of nuclear factor (NF)-κB, interleukin-1 receptor-associated kinase (IRAK)1, extracellular regulated protein kinases (ERK)1, Jun N-terminal kinase (JNK) and β-catenin in FLSs. RESULTS: DKK-1 targeting siRNAs inhibited the expression of DKK-1 in FLSs (P < 0.01). siRNAs induced a significant reduction of the levels of IL-6, IL-8, MMP2, MMP3 and MMP9 in FLSs compared to the control group (P < 0.05). DKK-1 targeting siRNAs inhibited the proliferation and invasion of FLSs (P < 0.05). Important molecules of pro-inflammatory signaling in FLSs, including IRAK1 and ERK1, were decreased by the inhibition of DKK-1 in FLSs. In contrast, β-catenin, a pivotal downstream molecule of the Wnt signaling pathway was increased. CONCLUSIONS: By inhibiting DKK-1, we were able to inhibit the proliferation, invasion and pro-inflammatory cytokine secretion of FLSs derived from RA, which was mediated by the ERK or the IRAK-1 signaling pathway. These data indicate the application of DKK-1 silencing could be a potential therapeutic approach to RA.[Abstract] [Full Text] [Related] [New Search]