These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Coarse-grained model of the nematic twist-bend phase from a stable state elastic energy. Author: Rosseto MP, Evangelista LR, Simonário PS, Zola RS. Journal: Phys Rev E; 2020 Jan; 101(1-1):012702. PubMed ID: 32069584. Abstract: The twist-bend nematic (N_{TB}) phase is a doubly degenerated heliconical structure with nanometric pitch and spontaneous bend and twist deformations. It is favored by symmetry-breaking molecular structures, such as bent dimers and bent-core molecules, and it is currently one of the burgeoning fields of liquid-crystal research. Although tremendous advances have been reported in the past five years, especially in molecular synthesis, most of its potential applications are held back by the lack of a proper and definitive elastic model to describe its behavior under various situations such as confinement and applied field. In this work we use a recently proposed stable state elastic model and the fact that the mesophase behaves as a lamellar structure to propose a mesoscopic or coarse-grained model for the N_{TB} phase. By means of standard procedures used for smectic and cholesteric liquid crystals, we arrive at a closed-form energy for the phase and apply it to a few situations of interest. The predicted compressibility for several values of the cone angle and the critical field for field-induced deformation agree well with recent experimental data.[Abstract] [Full Text] [Related] [New Search]