These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Porous Si-Cu3 Si-Cu Microsphere@C Core-Shell Composites with Enhanced Electrochemical Lithium Storage.
    Author: Pei S, Guo J, He Z, Huang LA, Lu T, Gong J, Shao H, Wang J.
    Journal: Chemistry; 2020 May 12; 26(27):6006-6016. PubMed ID: 32073696.
    Abstract:
    Low-cost Si-based anode materials with excellent electrochemical lithium storage present attractive prospects for lithium-ion batteries (LIBs). Herein, porous Si-Cu3 Si-Cu microsphere@C composites are designed and prepared by means of an etching/electroless deposition and subsequent carbon coating. The composites show a core-shell structure, with a porous Si/Cu microsphere core surrounded by the N-doped carbon shell. The Cu and Cu3 Si nanoparticles are embedded inside porous silicon microspheres, forming the porous Si/Cu microsphere core. The microstructure and lithium storage performance of porous Si-Cu3 Si-Cu microsphere@C composites can be effectively tuned by changing electroless deposition time. The Si-Cu3 Si-Cu microsphere@C composite prepared with 12 min electroless deposition delivers a reversible capacity of 627 mAh g-1 after 200 cycles at 2 A g-1 , showing an enhanced lithium storage ability. The superior lithium storage performance of the Si-Cu3 Si-Cu microsphere@C composite can be ascribed to the improved electronic conductivity, enhanced mechanical stability, and better buffering against the large volume change in the repeated lithiation/delithiation processes.
    [Abstract] [Full Text] [Related] [New Search]