These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cerebellar Rebound Nystagmus Explained as Gaze-Evoked Nystagmus Relative to an Eccentric Set Point: Implications for the Clinical Examination.
    Author: Bögli SY, Straumann D, Schuknecht B, Bertolini G, Tarnutzer AA.
    Journal: Cerebellum; 2021 Oct; 20(5):751-759. PubMed ID: 32076935.
    Abstract:
    A brain stem/cerebellar neural integrator enables stable eccentric gaze. Cerebellar loss-of-function can cause an inability to maintain gaze eccentrically (gaze-evoked nystagmus). Moreover, after returning gaze to straight ahead, the eyes may drift toward the prior eye position (rebound nystagmus). Typically, gaze-evoked nystagmus decays during continuously held eccentric gaze. We hypothesized this adaptive behavior to be prerequisite for rebound nystagmus and thus predicted a correlation between the velocity decay of gaze-evoked nystagmus and the initial velocity of rebound nystagmus. Using video-oculography, eye position was measured in 11 patients with cerebellar degeneration at nine horizontal gaze angles (15° nasal to 25° temporal) before (baseline), during, and after attempted eccentric gaze at ± 30° for 20 s. We determined the decrease of slow-phase velocity at eccentric gaze and the slow-phase velocity of the subsequent rebound nystagmus relative to the baseline. During sustained eccentric gaze, eye drift velocity of gaze-evoked nystagmus decreased by 2.40 ± 1.47°/s. Thereafter, a uniform change of initial eye drift velocity relative to the baseline (2.40 ± 1.35°/s) occurred at all gaze eccentricities. The velocity decrease during eccentric gaze and the subsequent uniform change of eye drift were highly correlated (R2 = 0.80, p < 0.001, slope = 1.09). Rebound nystagmus can be explained as gaze-evoked nystagmus relative to a set point (position with least eye drift) away from straight-ahead eye position. To improve detection at the bedside, we suggest testing rebound nystagmus not at straight-ahead eye position but at an eccentric position opposite of prior eccentric gaze (e.g., 10°), ideally using quantitative video-oculography to facilitate diagnosis of cerebellar loss-of-function.
    [Abstract] [Full Text] [Related] [New Search]