These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simultaneous Improvement of Ionic Conductivity and Mechanical Strength in Block Copolymer Electrolytes with Double Conductive Nanophases.
    Author: Cao XH, Li JH, Yang MJ, Yang JL, Wang RY, Zhang XH, Xu JT.
    Journal: Macromol Rapid Commun; 2020 Apr; 41(7):e1900622. PubMed ID: 32077181.
    Abstract:
    The most daunting challenge of solid polymer electrolytes (SPEs) is the development of materials with simultaneously high ionic conductivity and mechanical strength. Herein, SPEs of lithium bis-(trifluoromethanesulfonyl)imide (LiTFSI)-doped poly(propylene monothiocarbonate)-b-poly(ethylene oxide) (PPMTC-b-PEO) block copolymers (BCPs) with both blocks associating with Li+ ions are prepared. It is found that the PPMTC-b-PEO/LiTFSI electrolytes with double conductive phases exhibit much higher ionic conductivity (2 × 10-4 S cm-1 at r.t.) than the BCP electrolytes with a single conductive phase. Concurrently, the storage moduli of PPMTCn -b-PEO44 /LiTFSI electrolytes are ≈1-4 orders of magnitude higher than that of the neat PEO/LiTFSI electrolytes. Therefore, simultaneous improvement of ionic conductivity and mechanical properties is achieved by construction of a microphase-separated and disordered structure with double conductive phases.
    [Abstract] [Full Text] [Related] [New Search]