These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neuroprotective effects of miR-532-5p against ischemic stroke. Author: Mu J, Cheng X, Zhong S, Chen X, Zhao C. Journal: Metab Brain Dis; 2020 Jun; 35(5):753-763. PubMed ID: 32086725. Abstract: Stroke can cause death and disability and has a high incidence with many complications. So far, effective treatment options for stroke are still limited. MicroRNA-532-5p (miR-532-5p) is significantly downregulated in stroke. However, the role of miR-532-5p in ischemic stroke is still unclear. In this study, we established an in vivo middle cerebral artery occlusion (MCAO) model in mice. The expression level of miR-532-5p, neurological score, infarct area, neuronal apoptosis, and phosphoinositide 3-kinase (PI3K)/Akt signaling pathway-related molecules were examined. Low miR-532-5p levels and high phosphatase and tensin homolog deleted on chromosome 10 (PTEN) levels were detected in the mouse MCAO model. MiR-532-5p overexpression improved neurological dysfunction, reduced the infarct area, attenuated neuronal injury and apoptosis, and promoted the activation of the PI3K/Akt signaling pathway in MCAO mice. In vitro, we treated mouse neuroblastoma cells (N2a) with oxygen-glucose deprivation and reperfusion (OGD/R). The expression level of miR-532-5p, cell viability, cell apoptosis, and the PI3K/Akt signaling pathway-related molecules were detected. Consistent with the in vivo tests, the miR-532-5p level was decreased and the PTEN level was increased in OGD-treated N2a cells in vitro. The miR-532-5p mimic increased cell viability, decreased cell apoptosis, and activated the PI3K/Akt signaling pathway. Furthermore, PTEN was verified as a target gene of miR-532-5p by luciferase reporter assay. PTEN overexpression attenuated the protective effect of miR-532-5p in OGD-treated N2a cells. In summary, these findings reveal that miR-532-5p protects against ischemic stroke by inhibiting PTEN and activating the PI3K/Akt signaling pathway and may serve as a novel therapeutic target for ischemic stroke.[Abstract] [Full Text] [Related] [New Search]