These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genomewide analysis of the CIII peroxidase family in sweet orange (Citrus sinensis) and expression profiles induced by Xanthomonas citri subsp. citri and hormones. Author: Li Q, Dou W, Qi J, Qin X, Chen S, He Y. Journal: J Genet; 2020; 99():. PubMed ID: 32089529. Abstract: Class III peroxidase (CIII prx) is a plant-specific multigene family that regulates the physiological and stress responses. This research aimed to exhaustively annotate and analyse the CIII prx family in sweet orange and to explore the regulated expression profiles by Xanthomonas citri subsp. citri (Xcc) and plant hormones. We further assessed the relationship between CIII prxs and citrus bacterial canker. The phylogeny, gene structure, conserved motifs, gene duplications and microsynteny of the CIII prx family were analysed. Expression profiles of specific CsPrxs induced by Xanthomonas citri subsp. citri and plant hormones were detected by quantitative reverse transcription-polymerase chain reaction. Subcellular localization was analysed through transient expression assessments. A total of 72 CIII prx members were identified from the genomes of sweet orange. In all chromosomes of sweet orange, the CsPrxs could be detected except in chromosome 8. In addition, three segmental duplications, four tandem duplications and 11 whole-genome duplications occurred among the CsPrxs, contributing to the family size expansion. From the Ka/Ks ratios, 15 of 18 duplicated CsPrxs pairs have experienced purifying selection process. A total of 15 conserved motifs were detected in CsPrxs, four of which were detected in all complete CsPrxs. A total of 12 expressed genes were identified from the EST database. The expression trends of 12 CsPrxs were differently expressed at different stages of infection by Xcc, five of which were potential candidate genes involved in Xcc resistance. These genes could be induced by salicylic acidand methyl jasmonate, and were extracellular proteins. These results further support our understanding of CIII prxs in citrus, particularly incitrus bacterial canker studies.[Abstract] [Full Text] [Related] [New Search]