These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Overcoming the Limits of the Interfacial Dzyaloshinskii-Moriya Interaction by Antiferromagnetic Order in Multiferroic Heterostructures. Author: Wang H, Dai Y, Liu Z, Xie Q, Liu C, Lin W, Liu L, Yang P, Wang J, Venkatesan TV, Chow GM, Tian H, Zhang Z, Chen J. Journal: Adv Mater; 2020 Apr; 32(14):e1904415. PubMed ID: 32090416. Abstract: Topologically protected magnetic states have a variety of potential applications in future spintronics owing to their nanoscale size (<100 nm) and unique dynamics. These fascinating states, however, usually are located at the interfaces or surfaces of ultrathin systems due to the short interaction range of the Dzyaloshinskii-Moriya interaction (DMI). Here, magnetic topological states in a 40-unit cells (16 nm) SrRuO3 layer are successfully created via an interlayer exchange coupling mechanism and the interfacial DMI. By controlling the thickness of an antiferromagnetic and ferromagnetic layer, interfacial ionic polarization, as well as the transformation between ferromagnetic and magnetic topological states, can be modulated. Using micromagnetic simulations, the formation and stability of robust magnetic skyrmions in SrRuO3 /BiFeO3 heterostructures are elucidated. Magnetic skyrmions in thick multiferroic heterostructures are promising for the development of topological electronics as well as rendering a practical approach to extend the interfacial topological phenomena to bulk via antiferromagnetic order.[Abstract] [Full Text] [Related] [New Search]