These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transient Elevation of Glucose Increases Arrhythmia Susceptibility in Non-Diabetic Rat Trabeculae With Non-Uniform Contraction.
    Author: Miura M, Handoh T, Taguchi Y, Hasegawa T, Takahashi Y, Morita N, Matsumoto A, Shindoh C, Sato H.
    Journal: Circ J; 2020 Mar 25; 84(4):551-558. PubMed ID: 32092718.
    Abstract:
    BACKGROUND: In non-diabetic patients with acute coronary syndrome, stress hyperglycemia occasionally occurs and is related to their mortality. Whether transient elevation of glucose affects arrhythmia susceptibility in non-diabetic hearts with non-uniform contraction was examined. METHODS AND RESULTS: Force, intracellular Ca2+([Ca2+]i), and membrane potential were measured in trabeculae from rat hearts. Non-uniform contraction was produced by a jet of paralyzing solution. Ca2+waves and arrhythmias were induced by electrical stimulation (2.0 mmol/L [Ca2+]o). The activity of Ca2+/calmodulin-dependent protein kinaseII (CaMKII) was measured. An elevation of glucose from 150 to 400 mg/dL increased the velocity of Ca2+waves and the number of spontaneous action potentials triggered by electrical stimulation. Besides, the elevation of glucose increased the CaMKII activity. In the presence of 1 μmol/L KN-93, the elevation of glucose did not increase the velocity of Ca2+waves and the number of triggered action potentials. In addition, in the presence of 1 μmol/L autocamtide-2 related inhibitory peptide or 50 μmol/L diazo-5-oxonorleucine, the elevation of glucose did not increase the number of triggered action potentials. Furthermore, the elevation of glucose by adding L-glucose did not increase their number. CONCLUSIONS: In non-diabetic hearts with non-uniform contraction, transient elevation of glucose increases the velocity of Ca2+waves by activating CaMKII,probably through glycosylation with O-linked β-N-acetylglucosamine, thereby increasing arrhythmia susceptibility.
    [Abstract] [Full Text] [Related] [New Search]