These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thromboxane A2 in the paraventricular hypothalamic nucleus mediates glucoprivation-induced adrenomedullary outflow. Author: Tachi M, Yamaguchi N, Okada S. Journal: Eur J Pharmacol; 2020 May 15; 875():173034. PubMed ID: 32097659. Abstract: Glucoprivation stimulates a rapid sympathetic response to release and/or secrete catecholamines into the bloodstream. However, the central regulatory mechanisms involving adrenoceptors and prostanoids production in the paraventricular hypothalamic nucleus (PVN) that are responsible for the glucoprivation-induced elevation of plasma catecholamines are still unresolved. In this study, we aimed to clarify whether glucoprivation-induced activation of noradrenergic neurons projecting to the PVN can induce α- and/or β-adrenergic receptor activation and prostanoids production in the PVN to elevate plasma catecholamine levels. We examined the effects of α- and β-adrenergic receptor antagonists, a cyclooxygenase inhibitor, a thromboxane A synthase inhibitor, and a PGE2 subtype EP3 receptor antagonist on intravenously administered 2-deoxy-D-glucose (2-DG)-induced elevation of noradrenaline in the PVN and plasma levels of catecholamine in freely moving rats. In addition, we examined whether intravenously administered 2-DG can increase prostanoids levels in the PVN microdialysates. Intracerebroventricular (i.c.v.) pretreatment with phentolamine (a non-selective α-adrenergic receptor antagonist) suppressed the 2-DG-induced increase in the plasma level of adrenaline, whereas i.c.v. pretreatment with propranolol (a non-selective β-adrenergic receptor antagonist) suppressed the 2-DG-induced elevation of the plasma level of noradrenaline. I.c.v. pretreatment with indomethacin (a cyclooxygenase inhibitor) and furegrelate (a thromboxane synthase inhibitor) attenuated the 2-DG-induced elevations of both noradrenaline and adrenaline levels. Furthermore, 2-DG administration elevated the thromboxane B2 level, a metabolite of thromboxane A2 in PVN microdialysates. Our results suggest that glucoprivation-induced activation of α- and β-adrenergic receptor in the brain including the PVN and then thromboxane A2 production in the PVN, which are essential for the 2-DG-induced elevations of both plasma adrenaline and noradrenaline levels.[Abstract] [Full Text] [Related] [New Search]