These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bioallethrin-induced generation of reactive species and oxidative damage in isolated human erythrocytes. Author: Arif A, Salam S, Mahmood R. Journal: Toxicol In Vitro; 2020 Jun; 65():104810. PubMed ID: 32097678. Abstract: Bioallethrin is an insecticide that is widely used to control mosquitoes, fleas and cockroaches. The widespread use of bioallethrin has resulted in both occupational and non-occupational human exposure. Bioallethrin enters blood, regardless of the route of exposure, where it can interact with erythrocytes. We have studied the effect of bioallethrin on isolated human erythrocytes under in vitro conditions. Erythrocytes were incubated with increasing concentrations of bioallethrin (10-200 μM) for 4 h at 37 °C. Several biochemical parameters were analyzed in bioallethrin treated and untreated (control) cells. Incubation of erythrocytes with bioallethrin increased protein oxidation, lipid peroxidation and depleted sulfhydryl group content. Membrane damage was evident from cell lysis, osmotic fragility, inhibition of bound enzymes and transmembrane electron transport system. Bioallethrin also increased hemoglobin oxidation, heme degradation and the release of free iron moiety. This will decrease the oxygen transporting ability of blood. Bioallethrin treatment altered the specific activities of antioxidant enzymes and diminished the antioxidant power of cells. Scanning electron microscopy showed that bioallethrin treatment also altered erythrocyte mophology. Almost all changes were in a bioallethrin concentration dependent manner. The cytotoxicity of bioallethrin is probably mediated by reactive oxygen and nitrogen species whose formation was significantly enhanced in treated erythrocytes. Thus bioallethrin enhances the generation of reactive species which cause oxidative damage of cell components in human erythrocytes.[Abstract] [Full Text] [Related] [New Search]