These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A New Equation for Calculation of Low-Density Lipoprotein Cholesterol in Patients With Normolipidemia and/or Hypertriglyceridemia. Author: Sampson M, Ling C, Sun Q, Harb R, Ashmaig M, Warnick R, Sethi A, Fleming JK, Otvos JD, Meeusen JW, Delaney SR, Jaffe AS, Shamburek R, Amar M, Remaley AT. Journal: JAMA Cardiol; 2020 May 01; 5(5):540-548. PubMed ID: 32101259. Abstract: IMPORTANCE: Low-density lipoprotein cholesterol (LDL-C), a key cardiovascular disease marker, is often estimated by the Friedewald or Martin equation, but calculating LDL-C is less accurate in patients with a low LDL-C level or hypertriglyceridemia (triglyceride [TG] levels ≥400 mg/dL). OBJECTIVE: To design a more accurate LDL-C equation for patients with a low LDL-C level and/or hypertriglyceridemia. DESIGN, SETTING, AND PARTICIPANTS: Data on LDL-C levels and other lipid measures from 8656 patients seen at the National Institutes of Health Clinical Center between January 1, 1976, and June 2, 1999, were analyzed by the β-quantification reference method (18 715 LDL-C test results) and were randomly divided into equally sized training and validation data sets. Using TG and non-high-density lipoprotein cholesterol as independent variables, multiple least squares regression was used to develop an equation for very low-density lipoprotein cholesterol, which was then used in a second equation for LDL-C. Equations were tested against the internal validation data set and multiple external data sets of either β-quantification LDL-C results (n = 28 891) or direct LDL-C test results (n = 252 888). Statistical analysis was performed from August 7, 2018, to July 18, 2019. MAIN OUTCOMES AND MEASURES: Concordance between calculated and measured LDL-C levels by β-quantification, as assessed by various measures of test accuracy (correlation coefficient [R2], root mean square error [RMSE], mean absolute difference [MAD]), and percentage of patients misclassified at LDL-C treatment thresholds of 70, 100, and 190 mg/dL. RESULTS: Compared with β-quantification, the new equation was more accurate than other LDL-C equations (slope, 0.964; RMSE = 15.2 mg/dL; R2 = 0.9648; vs Friedewald equation: slope, 1.056; RMSE = 32 mg/dL; R2 = 0.8808; vs Martin equation: slope, 0.945; RMSE = 25.7 mg/dL; R2 = 0.9022), particularly for patients with hypertriglyceridemia (MAD = 24.9 mg/dL; vs Friedewald equation: MAD = 56.4 mg/dL; vs Martin equation: MAD = 44.8 mg/dL). The new equation calculates the LDL-C level in patients with TG levels up to 800 mg/dL as accurately as the Friedewald equation does for TG levels less than 400 mg/dL and was associated with 35% fewer misclassifications when patients with hypertriglyceridemia (TG levels, 400-800 mg/dL) were categorized into different LDL-C treatment groups. CONCLUSIONS AND RELEVANCE: The new equation can be readily implemented by clinical laboratories with no additional costs compared with the standard lipid panel. It will allow for more accurate calculation of LDL-C level in patients with low LDL-C levels and/or hypertriglyceridemia (TG levels, ≤800 mg/dL) and thus should improve the use of LDL-C level in cardiovascular disease risk management.[Abstract] [Full Text] [Related] [New Search]