These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhancing Performance of a GaAs/AlGaAs/GaAs Nanowire Photodetector Based on the Two-Dimensional Electron-Hole Tube Structure.
    Author: Zhu X, Lin F, Zhang Z, Chen X, Huang H, Wang D, Tang J, Fang X, Fang D, Ho JC, Liao L, Wei Z.
    Journal: Nano Lett; 2020 Apr 08; 20(4):2654-2659. PubMed ID: 32101689.
    Abstract:
    Here, we design and engineer an axially asymmetric GaAs/AlGaAs/GaAs (G/A/G) nanowire (NW) photodetector that operates efficiently at room temperature. Based on the I-type band structure, the device can realize a two-dimensional electron-hole tube (2DEHT) structure for the substantial performance enhancement. The 2DEHT is observed to form at the interface on both sides of GaAs/AlGaAs barriers, which constructs effective pathways for both electron and hole transport in reducing the photocarrier recombination and enhancing the device photocurrent. In particular, the G/A/G NW photodetector exhibits a responsivity of 0.57 A/W and a detectivity of 1.83 × 1010 Jones, which are about 7 times higher than those of the pure GaAs NW device. The recombination probability has also been significantly suppressed from 81.8% to 13.2% with the utilization of the 2DEHT structure. All of these can evidently demonstrate the importance of the appropriate band structure design to promote photocarrier generation, separation, and collection for high-performance optoelectronic devices.
    [Abstract] [Full Text] [Related] [New Search]