These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tetra-aryl cyclobutane and stilbenes from the rhizomes of Rheum undulatum and their α-glucosidase inhibitory activity: Biological evaluation, kinetic analysis, and molecular docking simulation.
    Author: Ha MT, Kim M, Kim CS, Park SE, Kim JA, Woo MH, Choi JS, Min BS.
    Journal: Bioorg Med Chem Lett; 2020 Apr 15; 30(8):127049. PubMed ID: 32111435.
    Abstract:
    One achiral tetra-aryl cyclobutane [rheundulin A (1)] and three stilbene glycosides [rheundulins B-D (2-4)] were isolated from the methanol extract of Rheum undulatum L., along with eight known compounds (5-12). Structural determination of the new compounds (1-4) was accomplished using comprehensive spectroscopic methods. Compound 1 represents the first example of a dimeric stilbene linked via a cyclobutane ring from the Rheum genus. All isolates were screened for their inhibition against α-glucosidase. Among them, stilbene derivatives (5 and 6) showed strong inhibitory effects on α-glucosidase with IC50 values of 0.5 and 15.4 µM, respectively, which were significantly higher than that of the positive control, acarbose (IC50 = 126.8 µM). Rheundulin A (1) showed moderate α-glucosidase inhibition with an IC50 value of 80.1 µM. In addition, kinetic analysis and molecular docking simulation of the most active compound (5) with α-glucosidase were performed for the first time. Kinetic studies revealed that compound 5 competitively inhibited the active site of α-glucosidase (Ki = 0.40 µM), while 6 had a mixed-type inhibitory effect against α-glucosidase (Ki = 15.34 µM). Molecular docking simulations of 5 and 6 demonstrated negative-binding energies, indicating high proximity to the active site and tight binding to α-glucosidase enzyme.
    [Abstract] [Full Text] [Related] [New Search]