These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A retrospective analysis to determine if exercise training-induced thermoregulatory adaptations are mediated by increased fitness or heat acclimation. Author: Ravanelli N, Gagnon D, Imbeault P, Jay O. Journal: Exp Physiol; 2021 Jan; 106(1):282-289. PubMed ID: 32118324. Abstract: NEW FINDINGS: What is the central question of this study? Are fitness-related improvements in thermoregulatory responses during uncompensable heat stress mediated by aerobic capacity V̇O2max or is it the partial heat acclimation associated with training? What is the main finding and its importance? During uncompensable heat stress, individuals with high and low V̇O2max displayed similar sweating and core temperature responses whereas exercise training in previously untrained individuals resulted in a greater sweat rate and a smaller rise in core temperature. These observations suggest that it is training, not V̇O2max per se, that mediates thermoregulatory improvements during uncompensable heat stress. ABSTRACT: It remains unclear whether aerobic fitness, as defined by the maximum rate of oxygen consumption V̇O2max , independently improves heat dissipation in uncompensable environments, or whether the thermoregulatory adaptations associated with heat acclimation are due to repeated bouts of exercise-induced heat stress during regular aerobic training. The present analysis sought to determine if V̇O2max independently influences thermoregulatory sweating, maximum skin wettedness (ωmax ) and the change in rectal temperature (ΔTre ) during 60 min of exercise in an uncompensable environment (37.0 ± 0.8°C, 4.0 ± 0.2 kPa, 64 ± 3% relative humidity) at a fixed rate of heat production per unit mass (6 W kg-1 ). Retrospective analyses were performed on 22 participants (3 groups), aerobically unfit (UF; n = 7; V̇O2max : 41.7 ± 9.4 ml kg-1 min-1 ), aerobically fit (F; n = 7; V̇O2max : 55.6 ± 4.3 ml kg-1 min-1 ; P < 0.01) and aerobically unfit (n = 8) individuals, before (pre; V̇O2max : 45.8 ± 11.6 ml kg-1 min-1 ) and after (post; V̇O2max : 52.0 ± 11.1 ml kg-1 min-1 ; P < 0.001) an 8-week training intervention. ωmax was similar between UF (0.74 ± 0.09) and F (0.78 ± 0.08, P = 0.22). However, ωmax was greater post- (0.84 ± 0.08) compared to pre- (0.72 ± 0.06, P = 0.02) training. During exercise, mean local sweat rate (forearm and upper-back) was greater post- (1.24 ± 0.20 mg cm-2 min-1 ) compared to pre- (1.04 ± 0.25 mg cm-2 min-1 , P < 0.01) training, but similar between UF (0.94 ± 0.31 mg cm-2 min-1 , P = 0.90) and F (1.02 ± 0.30 mg cm-2 min-1 ). The ΔTre at 60 min of exercise was greater pre- (1.13 ± 0.16°C, P < 0.01) compared to post- (0.96 ± 0.14°C) training, but similar between UF (0.85 ± 0.29°C, P = 0.22) and F (0.95 ± 0.22°C). Taken together, aerobic training, not V̇O2max per se, confers an increased ωmax , greater sweat rate, and smaller rise in core temperature during uncompensable heat stress in fit individuals.[Abstract] [Full Text] [Related] [New Search]