These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Detoxification and reclamation of hydrometallurgical arsenic- and trace metals-bearing gypsum via hydrothermal recrystallization in acid solution. Author: Ma X, Yao S, Yuan Z, Bi R, Wu X, Zhang J, Wang S, Wang X, Jia Y. Journal: Chemosphere; 2020 Jul; 250():126290. PubMed ID: 32120149. Abstract: Arsenic- and trace metals-bearing gypsum (As-gypsum) is one of the major hazardous solid wastes produced from metallurgical industry that poses a serious threat to the environment. However, the method for effective extraction of As and trace metals from As-gypsum is still lacking. In this study, simultaneous extraction of As and trace metals from a hydrometallurgical As-gypsum via hydrothermal recrystallization in acid solution was investigated. The effects of the type (H2SO4 vs HCl) and concentration of acid, and temperature on extraction efficiency were assessed. The results showed that 99% As, >92% Cu and >96% Zn could be extracted from the As-gypsum during hydrothermal treatment in 6 mol L-1 H2SO4 at 90 and 120 °C, but Pb and Cd could not be extracted efficiently. The results of hydrothermal treatment in HCl solutions demonstrated that higher HCl concentration and temperature significantly enhanced the extraction efficiency and 100% As, Cu2+, Zn2+, Pb2+ and >90% Cd were removed from the As-gypsum after treatment in 6 mol L-1 HCl, at 120 °C, for 12 h. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy results revealed that dissolution-recrystallization of gypsum is the key process for the removal of the incorporated As and trace metals. Thermodynamic modelling indicated that the released HAsO42-/Me2+ transformed into H3AsO4/MeCln(2-n) (1 ≤ n ≤ 4) species in HCl solution, hence inhibiting their reincorporation into the recrystallization products via isomorphic substitution for SO42-/Ca2+. This work provides a simple and effective method for detoxification and reclamation of As-gypsum.[Abstract] [Full Text] [Related] [New Search]