These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Survival of Recombinant Monoclonal Antibodies (IgG, IgA and sIgA) Versus Naturally-Occurring Antibodies (IgG and sIgA/IgA) in an Ex Vivo Infant Digestion Model.
    Author: Lueangsakulthai J, Sah BNP, Scottoline BP, Dallas DC.
    Journal: Nutrients; 2020 Feb 27; 12(3):. PubMed ID: 32120792.
    Abstract:
    To prevent infectious diarrhea in infants, orally-supplemented enteric pathogen-specific recombinant antibodies would need to resist degradation in the gastrointestinal tract. Palivizumab, a recombinant antibody specific to respiratory syncytial virus (RSV), was used as a model to assess the digestion of neutralizing antibodies in infant digestion. The aim was to determine the remaining binding activity of RSV F protein-specific monoclonal and naturally-occurring immunoglobulins (Ig) in different isoforms (IgG, IgA, and sIgA) across an ex vivo model of infant digestion. RSV F protein-specific monoclonal immunoglobulins (IgG, IgA, and sIgA) and milk-derived naturally-occurring Ig (IgG and sIgA/IgA) were exposed to an ex vivo model of digestion using digestive samples from infants (gastric and intestinal samples). The survival of each antibody was tested via an RSV F protein-specific ELISA. Ex vivo gastric and intestinal digestion degraded palivizumab IgG, IgA, and sIgA (p < 0.05). However, the naturally-occurring RSV F protein-specific IgG and sIgA/IgA found in human milk were stable across gastric and intestinal ex vivo digestion. The structural differences between recombinant and naturally-occurring antibodies need to be closely examined to guide future design of recombinant antibodies with increased stability for use in the gastrointestinal tract.
    [Abstract] [Full Text] [Related] [New Search]