These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Silver nanoparticle/bacterial nanocellulose paper composites for paste-and-read SERS detection of pesticides on fruit surfaces. Author: Parnsubsakul A, Ngoensawat U, Wutikhun T, Sukmanee T, Sapcharoenkun C, Pienpinijtham P, Ekgasit S. Journal: Carbohydr Polym; 2020 May 01; 235():115956. PubMed ID: 32122492. Abstract: This study aimed to develop an eco-friendly flexible surface-enhanced Raman scattering (SERS) substrate for in-situ detection of pesticides using biodegradable bacterial nanocellulose (BNC). Plasmonic silver nanoparticle- bacterial nanocellulose paper (AgNP-BNCP) composites were prepared by vacuum-assisted filtration. After loading AgNPs into BNC hydrogel, AgNPs were trapped firmly in the network of nanofibrous BNCP upon ambient drying process, resulting in 3D SERS hotspots within a few-micron depth on the substrate. The fabricated AgNP-BNCPs exhibited high SERS activity with good reproducibility and stability as demonstrated by the detection of 4-aminothiophenol and methomyl pesticide. Due to the optical transparency of BNCP, a direct and rapid detection of methomyl on fruit peels using AgNP-BNCPs can be achieved, demonstrating a simple and effective 'paste-and-read' SERS approach. These results demonstrate potential of AgNP-BNCP composites for user-friendly in-situ SERS analysis.[Abstract] [Full Text] [Related] [New Search]