These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multivalent interactions between CsoS2 and Rubisco mediate α-carboxysome formation.
    Author: Oltrogge LM, Chaijarasphong T, Chen AW, Bolin ER, Marqusee S, Savage DF.
    Journal: Nat Struct Mol Biol; 2020 Mar; 27(3):281-287. PubMed ID: 32123388.
    Abstract:
    Carboxysomes are bacterial microcompartments that function as the centerpiece of the bacterial CO2-concentrating mechanism by facilitating high CO2 concentrations near the carboxylase Rubisco. The carboxysome self-assembles from thousands of individual proteins into icosahedral-like particles with a dense enzyme cargo encapsulated within a proteinaceous shell. In the case of the α-carboxysome, there is little molecular insight into protein-protein interactions that drive the assembly process. Here, studies on the α-carboxysome from Halothiobacillus neapolitanus demonstrate that Rubisco interacts with the N terminus of CsoS2, a multivalent, intrinsically disordered protein. X-ray structural analysis of the CsoS2 interaction motif bound to Rubisco reveals a series of conserved electrostatic interactions that are only made with properly assembled hexadecameric Rubisco. Although biophysical measurements indicate that this single interaction is weak, its implicit multivalency induces high-affinity binding through avidity. Taken together, our results indicate that CsoS2 acts as an interaction hub to condense Rubisco and enable efficient α-carboxysome formation.
    [Abstract] [Full Text] [Related] [New Search]