These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification and Confirmation of Fentanyls on Paper using Portable Surface Enhanced Raman Spectroscopy and Paper Spray Ionization Mass Spectrometry. Author: Fedick PW, Pu F, Morato NM, Cooks RG. Journal: J Am Soc Mass Spectrom; 2020 Mar 04; 31(3):735-741. PubMed ID: 32126777. Abstract: Fentanyl and its analogues play a major role in the current opioid epidemic. In particular, these highly potent opioids have become a health hazard due to their use as additives in street drugs. Consequently, rapid on-site procedures for the analysis of this class of seized drugs are needed, especially considering the reported backlog of drug samples, which must undergo identification and confirmation tests to validate the presence of an illicit substance. Paper based devices are cheap sampling and analysis vehicles that have been shown capable of allowing rapid identification and confirmation of drugs of abuse. Modifying paper substrates by imprinting nanoparticles enables surface enhanced Raman spectroscopy (SERS) as well as a second analysis from the same substrate, namely paper spray ionization mass spectrometry. While such a procedure has been described for laboratory use, these illicit drug samples are typically collected in the field and this is where testing should be done. We combine paper SERS and paper spray MS on field-portable and commercial off-the-shelf (COTS) devices for the rapid and low-cost identification and confirmation of fentanyl and its analogues, enabling in situ analysis at the point of seizure of suspect samples. The commercial nature of both instruments moves this technology from the academic realm to a setting where the criminal justice system can realistically utilize it. The capabilities of this single-substrate dual-analyzer technique are further examined by sampling a variety of surfaces of forensic interest.[Abstract] [Full Text] [Related] [New Search]