These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of transport systems in amino acid metabolism: leucine toxicity and the branched-chain amino acid transport systems. Author: Quay SC, Dick TE, Oxender DL. Journal: J Bacteriol; 1977 Mar; 129(3):1257-65. PubMed ID: 321421. Abstract: The livR locus, which leads to a trans-recessive derepression of branched-chain amino acid transport and periplasmic branched-chain amino acid-binding proteins, is responsible for greatly increased sensitivity toward growth inhibition by leucine, valine, and serine and, as shown previously, for increased sensitivity toward toxicity by branched-chain amino acid analogues, such as 4-azaleucine or 5',5',5'-trifluoroleucine. These phenotypes are similar to those of relA mutants; however, the livR mutants retain the stringent response of ribonucleic acid synthesis. However, an increase in the rate of transport or in the steady-state intracellular level of amino acids in the livR strain cannot completely account for this sensitivity. The ability of the LIV-I transport system to carry out exchange of pool amino acids for extracellular leucine is a major factor in leucine sensitivity. The previous finding that inhibition of threonine deaminase by leucine contributes to growth inhibition is confirmed by simulating the in vivo conditions using a toluene-treated cell preparation with added amino acids at levels corresponding to the internal pool. The relationship between transport systems and corresponding biosynthetic pathways is discussed and the general principle of a coordination in the regulation of transport and biosynthetic pathways is forwarded. The finding that the LIV-I transport system functions well for amino acid exchange in contrast to the LIV-II system provides another feature that distinguishes these systems in addition to previously described differences in regulation and energetics.[Abstract] [Full Text] [Related] [New Search]