These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis of a trisaccharide of 3-deoxy-D-manno-2-octulopyranosylonic acid (KDO) residues related to the genus-specific lipopolysaccharide epitope of Chlamydia.
    Author: Kosma P, Schulz G, Brade H.
    Journal: Carbohydr Res; 1988 Dec 01; 183(2):183-99. PubMed ID: 3214841.
    Abstract:
    The disaccharides, O-(sodium 3-deoxy-alpha- and -beta-D-manno-2-octulopyranosylonate)-(2----8)-sodium (allyl 3-deoxy-alpha-D-manno-2-octulopyranosid)onate, were prepared via glycosylation of methyl (allyl 4,5,7-tri-O-acetyl-3-deoxy-alpha-D-manno-2-octulopyranosid)onat e with methyl (4,5,7,8-tetra-O-acetyl-3-deoxy-D-manno-2-octulopyranosyl bromide)onate under Helferich and Koenigs-Knorr conditions, respectively. Based on g.l.c.-m.s. data of the alpha- and beta-(2----8)-linked disaccharide derivatives, obtained after carbonyl- and carboxyl-group reduction, followed by methylation, the alpha-anomeric configuration was assigned to the terminal KDO-residue in the KDO-region of Chlamydial lipopolysaccharide. The trisaccharide O-(sodium 3-deoxy-alpha-D-manno-2-octulopyranosylonate)-(2----8)-(sodium 3-deoxy-alpha-D-manno-2-octulopyranosylonate)-(2----4)-sodium (allyl 3-deoxy-alpha-D-manno-2-octulopyranosid)onate was obtained via block synthesis using an alpha-(2----8)-linked disaccharide bromide derivative as the glycosyl donor. Copolymerization of the allyl glycosides with acrylamide gave water-soluble macromolecular antigens, suitable for defining epitope specificities of monoclonal antibodies directed against Chlamydial LPS.
    [Abstract] [Full Text] [Related] [New Search]